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A B S T R A C T

The gradually decreasing capacity of lithium-ion batteries can serve as a health indicator for tracking their
degradation. Therefore, it is important to predict the capacity of future cycles to assess the health condition
of lithium-ion batteries. According to electrochemical theory and the characteristics of the data curves, this
paper proposes several ideas for feature extraction. A novel fusion prognostic framework is proposed, in which
a data-driven time series prediction model is adopted and combined with extracted features for lithium-ion
battery capacity prediction. The proposed method is based on an autoregression with an exogenous-variable
model that can self-adaptively update at each cycle and then predict the state of health in the next cycle and
cycles in the near future. Under the assumption that the historical capacity data is available, the experimental
results showed that by using the proposed autoregression with exogenous variables model, the root mean
square error, mean absolute error, and mean absolute percentage error of the prediction results were 0.000963,
0.000562, and 0.000584, respectively, which indicated that the prediction results were precise.
1. Introduction

Lithium-ion batteries, because of their high energy densities, high
galvanic potentials, wide temperature ranges, low self-discharge rates,
and long lifetimes, are core components in a wide variety of systems.
Therefore, the reliability of lithium-ion batteries has become a sub-
ject of great interest to the electronics industry. Safety management,
charging and discharging control, performance degradation, capacity
fade, and remaining useful life (RUL) estimation of lithium ion batteries
have become important and challenging issues in the fields of reliability
engineering, automatic testing, power sources, and electric vehicles.
As a result, lithium-ion battery state of health (SOH) has become an
important issue in the prognostics and health management (PHM) of
electronics [1,2]. Prognostics and RUL estimation entail the use of the
current and previous system states to predict the future states of a
battery system. Reliable predicted information can be used to schedule
repairs and maintenance in advance and provide an alarm before faults
reach critical levels to prevent performance degradation, malfunction,
or even catastrophic failures [3,4].

1.1. Literature review

The various approaches for battery SOH estimation can be generally
classified into two categories: model-based approaches and data-driven
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approaches [5,6]. Model-based methods usually include establishing
physical models to describe the physical process of the system state and
fault evolution. However, model-based methods may not be suitable
for many practical applications, in which the physical parameters may
vary under various operating conditions [7]. Moreover, it is difficult to
obtain an appropriate physical model to describe the dynamic charac-
teristics of the system, and model-based approaches cannot be applied
for those complex systems in which the internal state variables are
inaccessible to direct testing and monitoring with general sensors.

Importantly, data-driven methods have attracted increasing atten-
tion owing to the increasing availability of a large amount of battery
data. Furthermore, data-driven methods have attracted extensive inter-
est because of their high precision and model-free characteristics. In
short, the data-driven methods show advantages for battery prediction
in the era of big data, and some new research progress has been
made. For example, Xu et al. [8] used a multiscale dual extended
Kalman filter to estimate the battery state. Ouyang et al. [9] applied a
Gaussian linear model based on six commonly used open-circuit-voltage
parameters to estimate the SOH. Shen et al. [10] proposed a deep
convolutional neural network transfer learning algorithm that took the
capacity, voltage, and current information as inputs. Liu et al. [11]
introduced a new energy-based health index based on the voltage curve
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of the battery; then, they designed an online SOH estimation framework
based on a limit learning machine. Shu et al. [12] developed a fixed-
size least squares support vector machine method to estimate the SOH
using the charging time within a predefined voltage range. In recent
years, a new data-driven method based on Gaussian process regression
(GPR) has emerged. This Bayesian nonparametric probability method
exhibits good performances in nonlinear mapping, and it can deal with
problems such as high nonlinearity [13], battery degradation modeling,
and a small sample and prediction uncertainty representation for PHM.
Richardson et al. [14] automatically extracted the time value between
equal width voltage points as the input and constructed a GPR model
for field capacity estimation. Liu et al. [15] considered the temperature
and discharge depth, modified the covariance function, and proposed
two innovative models based on the GPR.

However, compared to model-based methods, data-driven methods
rely more on large-scale data. Therefore, it is very important to broaden
the range of battery features and include more extractable features to
establish a data model and improve the accuracy of the prediction.
After 2019, the multi-feature extraction scheme proposed by Severson
et al. [16] attracted extensive attention. The general features in the
recent literature were extracted based on the number of cycles or the
voltage curve [17]. Incremental capacity (IC) analysis and differential
voltage (DV) analysis are two electrochemical techniques recently in-
troduced for battery diagnosis and prediction [18]. Various features
have been extracted from the IC and DV curves, such as the strength,
position, and area under the curves, and it was verified that they
were highly correlated with battery degradation [19]. For example,
Tang et al. [20] used the regional capacity derived from the IC peak
during a constant-current charging process as the feature and employed
a linear regression model for SOH estimation. Pei et al. [21] used
the partially charged electric quantity derived from IC analysis as
the feature and employed a linear model for capacity estimation. Li
et al. [22] used IC values within a specific voltage interval as the
features and employed a Gaussian process regression model for SOH
estimation and RUL prediction. Li et al. [23] used the area, position,
and height of the second IC peak as the features and employed a
support vector machine for SOH estimation. Furthermore, to describe
such variations, the origins of the electrochemical activation in lithium-
ion batteries were introduced, which could help to understand the
battery degradation process from the perspective of electrochemistry
and further extract the corresponding health features [24–26].

There are many ways to apply data-driven technology, each of
which is equivalent to different assumptions about the nature of the
underlying process. One of the most common and simplest method is
to use direct mapping from cycle to SOH [13]. This is equivalent to
fitting a curve with the capacity cycle data and then predicting the
future value by extrapolating the fitted curve. This means that accurate
capacity data for the first few cycles of the battery life can be obtained.

However, this paper mainly focuses on capacity prediction, that is,
estimating the future values of battery capacity. Therefore, we assume
that the historical data of the capacity cycle is available. In practice,
these data can be obtained by direct measurement (low-speed charge–
discharge cycle specially used for capacity measurement at periodic
intervals) or by various other techniques, which can avoid interfering
with the system. However, the mapping from cycle to SOH is too
simple because the battery capacity depends on various factors, and
historical capacity data alone is unlikely to be sufficient to predict the
future capacity. Moreover, it can be reasonably expected that there
is a certain correlation between the previous capacity and the future
capacity. Therefore, using a time series model, we can explore its ability
to predict through historical data. In addition, the method applied to
the capacity and cycle data can then be applied to inputs with a greater
amount of information from the monitoring data, such as the current,
voltage, time, and impedance. To take time series information and
feature information together into consideration, an autoregression with
exogenous variables (AREV) model is proposed in this paper. Moreover,
in the feature extraction of external variables, we proposed several
ideas based on the principles of electrochemistry and the observation
2

of the IC and other related curves.
1.2. Our contributions

The methodology presented here produced robust and highly ac-
curate SOH predictions. In addition, we also provide a theoretical
framework. The method combines causality parameters through a hid-
den Markov model. The proposed AREV model achieves the following
objectives:

1. When the sensor connected to the battery receives new available
information, it dynamically combines this information. There-
fore, we named our model AREV, which represents autoregres-
sion with battery SOH data combined with exogenous feature
data extracted from other measurable battery data. AREV also
uses L1 (and possibly L2) regularization to automatically select
the most relevant information.

2. The latest battery degradation changes are dynamically cap-
tured using a 30-cycle moving window (immediately before the
expected prediction date) during training.

3. In addition, for the problem of feature extraction of lithium-ion
battery data, referring to a method proposed previously [16] and
combined with the principles of electrochemistry, we propose
several possible ideas to extract the features of lithium-ion bat-
teries. Specific extraction ideas will be discussed in the second
section of the paper.

The experimental results showed that the proposed method
achieved great prediction results. Moreover, we verified the idea of
model construction in this paper; that is, the historical data of the
capacitance and other features extracted based on electrochemical
analysis and curve analysis played a role in the capacitance prediction
of the next cycle.

1.3. Organization of paper

The rest of this paper is organized as follows. The data and the
proposed feature extraction ideas are discussed in Section 2. Technical
details of the AREV model are introduced in Section 3. The experi-
mental results and comparative studies are reported and discussed in
Section 4, and our conclusions are drawn in Section 5.

2. Data

2.1. Data description

The dataset used in this study was presented previously [16]. A
Massachusetts Institute of Technology (MIT) team completed experi-
ments to acquire this dataset (therefore, it is referred to as the MIT
dataset in this paper). Our method used this data set unless otherwise
stated below. Due to the electrochemical mechanism and manufactur-
ing variability of the capacity fade of lithium-ion batteries, the capacity
decay is expected to be observed from multiple dimensions. The cells
have a nominal capacity of 1.1 Ah and a nominal voltage of 3.3 V. In
order to explore the fade process, commercial 𝐿𝑖𝐹𝑒𝑃𝑂4 (LFP)/graphite
cells manufactured by A123 Systems (APR18650M1 A) were cycled in
horizontal cylindrical fixtures on a 48-channel Arbin LBT potentiostat
in a forced-convection temperature-controlled environmental chamber
(30 ◦C) under various fast-charging conditions but identical discharging
conditions (4C to 2.0 V, where 1C was 1.1 A. While the chamber
temperature was controlled, the cell temperatures varied by up to 10
(30 ◦C) within a cycle due to the large amount of heat generated during
charge and discharge. This temperature variation was a function of the
internal impedance and charging policy (supplementary information is
available for this paper at https://doi.org/10.1038/s41560-019-0356-
8). Because the graphite negative electrode dominated the degradation
in these batteries, these results could be useful for other lithium-
ion batteries based on graphite. By deliberately varying the charging

conditions, the MIT team generated a dataset that captured a wide
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Fig. 1. Capacity curves of 123 batteries.

range of cycle lives, from approximately 150 to 2300 cycles (average
cycle life of 806 with a standard deviation of 377).

The voltage, current, cell temperature, and internal resistance were
continuously measured during cycling. The dataset contained approx-
imately 96,700 cycles, and thus, it is the largest publicly available
dataset for nominally identical commercial lithium-ion batteries cycled
under controlled conditions. Fig. 1 shows the discharge capacity as a
function of cycle number for the first 800 cycles. The capacity fade was
negligible in the first 100 cycles and accelerated near the end of life,
as is often observed in lithium-ion batteries (this dataset is available at
https://data.matr.io/1).

2.2. Feature extraction

A set of battery features extracted from the temperature, voltage,
and current information were adopted as degradation indicators. These
indicators were obtained by applying signal processing methods, such
as incremental capacity analysis, which are thought to be useful for
evaluating battery health.

Previous battery degradation studies have shown that the loss of
active material (LAM), the loss of lithium inventory (LLI), and the
increase in the internal resistance (IR) are the three main processes that
cause battery degradation [27]. Therefore, we look for possible health
features from these perspectives.

2.2.1. Features from incremental capacity (IC) curve
The characteristics of the IC curve can indicate the internal elec-

trochemical reactions of a battery and reflect the aging degree. There-
fore, the battery health characteristics can be extracted from the IC
curve [28]. The IC curve can be calculated by the following equation.
Note that discharge capacity is proportional to the discharging time
because of constant discharging current. The following relationships
between the discharging voltage and capacity can be acquired:

𝑉 = 𝑓 (𝑄), 𝑄 = 𝑓−1(𝑉 ), (1)

(𝑓−1)′ = 𝑑𝑄
𝑑𝑉

= 𝐼 ∗ 𝑑𝑡
𝑑𝑉

= 𝐼 ∗ 𝑑𝑡
𝑑𝑉

, (2)

where 𝑉 and 𝑄 are the discharge voltage and capacity under the
constant current level, and there is a certain functional relationship
between them, expressed by 𝑓 , 𝐼 is the discharge current, and 𝑡 is
the discharge time. Eq. (2) is regarded as an IC curve and is derived
from differential calculus. The incremental capacity curve describes
the relationship between a voltage change and a capacity change
(▵ 𝑄∕ ▵ 𝑉 ) during a discharge process. Although the battery has
a large charge and discharge current when used in the vehicle, as
shown previously [29,30], the peak value on the IC curve can still be
identified, which reveals the important characteristics of the battery
health based on normal charge and discharge data. A study on the rela-
tionship between the coulomb efficiency and the capacity degradation
of commercial lithium ion batteries was reported previously [31]. By
observing the gradual development of the IC curve peak in the whole
life cycle, we can understand the aging mechanism of the battery.
3

Fig. 2 illustrates the change of the IC peak value during battery
degradation. Fig. 2(a) shows the data obtained from our previous study
of the relationship between the coulombic efficiency and the capacity
degradation of commercial lithium ion batteries [18]. To better show
the change of the battery, this dataset was obtained by discharging at
1C and used in our previous research to illustrate the change process
of the IC curve during battery aging. As shown in Fig. 2(a), there
were three peaks on the IC curve of the fresh 𝐿𝑖𝐹𝑒𝑃𝑂4 (LFP) battery.
Fig. 2(a) also shows the relationship between the peak voltage position
and the SOH. A disproportionate decrease in the intensity of peak 1
was observed between the fresh cell and the cell with a 90% SOH,
which is expected to be caused by the loss of lithium inventory (LLI)
process. In contrast, the intensities of peaks 2 and 3 showed little
change, indicating that there was no significant loss of active material
in the LFP batteries. The positions of all three peaks moved from 90%
SOH to 80% SOH at a lower voltage.

However, in the MIT dataset that we used in this study, the data
were obtained in 4C discharge mode. Because the current was too
large, only one peak appeared on its IC curve, as shown in Fig. 2(b).
According to the above analysis, it was still feasible to use the peak
value in the IC curve as the data feature to predict the SOH value.
Therefore, extracting features from the peak movement of the curve
is proposed. In addition, the LAM factors can also be identified by
the unbalanced decrease in the peak intensity (Y-axis of the IC curve),
the decrease in the peak intensity ratio, and the offset of the peak
voltage position (x-axis of the IC curve). On the IC curve, the maximum
values of the abscissa and ordinate were calculated to obtain F1 and F2,
respectively. Therefore, we propose F1 and F2 as key features for this
work.

2.2.2. Features from discharge voltage curve
The loss of lithium inventory can also be observed on the change of

discharge voltage curve. To capture the electrochemical evolution of a
single cell during the cycle, several characteristics were calculated from
the discharge voltage curve. Specifically, we consider the period-to-
period evolution of 𝑄(𝑉 ) and the discharge voltage curve as functions
of the voltage for a given period, as shown in Fig. 3. Because the
voltage range was the same for each cycle, we considered the capacity
as a function of the voltage as the basis of the comparison cycle, and
therefore, proposed feature F3, F4 and F5.

2.2.3. Features from internal resistance (IR) curve
The IR is obtained by applying 10 consecutive pulses to the battery,

averaging the voltage drop of the pulse, and then dividing by the size
of the current pulse. For the cycle life test of commercial LFP batteries,
the increase in the IR is the main source of battery aging. The IR
values of two LFP batteries with two different life cycles are shown
in Fig. 4 (with 1748 and 426 charge–discharge cycles). The fluctuation
rates of the two had significant differences in the early stage of battery
life (the first 250 charge discharge cycles), which could be used in
model construction and life prediction. Therefore, extracting features
by mining and comparing the changes of the volatility of other features
in different stages is proposed, as well as using F6 as a feature.

2.2.4. Features from temperature curve
Temperature is a key factor that may affect the decline of the battery

performance. During charging and discharging, the battery tempera-
ture may fluctuate due to the switching of the charging/discharging
strategy, internal chemical reactions, and environmental factors. From
the perspective of electrochemistry, the temperature change has an
impact on the internal ion mobility and electrolyte conductivity of
the battery, which will affect the aging of the battery. Therefore, in
our work, thermal factors are considered in degradation modeling.
In general, thermal factors can be considered indirectly and directly.
The indirect method is to construct temperature-related parameters in
the degradation model. However, this method makes the model more

https://data.matr.io/1
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Fig. 2. Incremental capacity (IC) curves of an 𝐿𝑖𝐹𝑒𝑃𝑂4 (LFP) battery: (a) battery discharge at 1C; (b) battery discharge at 4C.
Fig. 3. Discharge voltage curves for battery in four different cycles. (MIT dataset).

Fig. 4. Internal resistance (IR) values of two LFP batteries. Red line: battery with 1748
lifecycles; blue line: battery with 426 lifecycles.
4

Fig. 5. Discharge temperature for battery in four different cycles. (MIT dataset).

complex and easy to over fit, and increases the computational bur-
den of the parameter estimation. In addition, the effectiveness of this
method depends on the construction method of the temperature-related
parameters and their sensitivity to battery degradation. In the modeling
process, the construction of parameters is still a difficult problem. In
view of the above shortcomings of the direct method, the direct method
was adopted in this work, which directly uses the temperature or simple
temperature statistics as the health features. This method can not only
consider the thermal factors in the degradation modeling, but also
keep the model simple. To comprehensively consider the influencing
factors of battery estimation and the prediction model, we included a
thermal correlation measurement as an additional feature in the health
feature set. Specifically, in this study, we selected the average surface
temperature of the charge and discharge processes in each cycle as the
thermally dependent features F7 and F8, respectively. From Fig. 5, we
can see that the general trend of the temperature fluctuated with the
increase in the number of cycles.
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Table 1
Extracted features.

Notation Details of extracted features

F1 𝑑𝑄
𝑑𝑉 𝑚𝑎𝑥

, y-axis maximum values on the IC curve.
F2 𝑑𝑄

𝑑𝑉 𝑚𝑎𝑥
(𝑉 ), x-axis of maximum values on the IC curve.

F3 𝑚𝑒𝑎𝑛(▵ 𝑄), mean of the difference of 𝑄 values in adjacent cycles.
F4 𝑣𝑎𝑟(▵ 𝑄), variance of the difference of 𝑄 values in adjacent cycles.
F5 𝑚𝑖𝑛(▵ 𝑄), minimum value of the difference of 𝑄 values in adjacent

cycles.
F6 IR, internal resistance.
F7 𝑇𝑚𝑎𝑥, maximum temperature of the cell in each cycle.
F8 𝑇𝑚𝑖𝑛, minimum temperature of the cell in each cycle.

2.3. Summary of extracted features

Therefore, in this work, eight different features were extracted,
as shown in Table 1. As described in Section 3.2, in the process of
model selection and updating, we adaptively selected the appropriate
features through the optimization process of the lasso algorithm. Due
to the characteristics of the algorithm, if some features did not play
a role in the prediction process, their parameters would be adjusted
to 0 in the training process, that is, the prediction model obtained
from the training would not contain this feature. Therefore, we no
longer artificially perform feature selection in the method presented in
Section 2.

3. Battery state of health (SOH) prediction based on autoregres-
sive with exogenous variables (AREV) model

3.1. AREV model

The proposed AREV model was first introduced for an influenza
infection prediction problem. Based on the influenza data in the past
few weeks (autoregressive term) and the search volume of influenza
related keywords in Internet searches (external variables), the number
of influenza infections in the next week was predicted. The prediction
effect of this model was good, and the influence of the autoregressive
term and external variables could be considered at the same time.
Because the composition of this dataset was similar to the SOH value
prediction process described in this paper, a combination of the two
was used to form the AREV model.

The proposed AREV model was motivated by a hidden Markov
model. The capacity value {𝑦𝑡} is the intrinsic time series of interest.
We impose an autoregressive model with lag 𝑛, which implies that the
ollection of vectors {𝑦(𝑡−𝑛+1)∶𝑡}𝑡≥𝑛 is a Markov chain (this captures the
act that the degradation process of the battery was gradual, and its
OH value was related to the SOH value of the previous cycles in a
hort period of time).

The vector of extracted features at a specific time, denoted as 𝑋𝑡, de-
ends only on the battery SOH at the same time. The Markovian prop-
rty on the block 𝑦(𝑡−𝑛+1)∶𝑡 leads to the (vector) hidden Markov model
tructure. Therefore, the mathematical assumptions of the proposed
odel are as follows:

ssumption 1.

𝑡 = 𝜇𝑦 +
𝑛
∑

𝑖=1
𝛼𝑗𝑦𝑡−𝑗 + 𝜖𝑡,

here 𝜖𝑡 represents i.i.d. Gaussian variables.

ssumption 2.

𝑡|𝑦𝑡 ∼ 𝑁(𝜇𝑥 + 𝑦𝑡𝛽,𝑄).

ssumption 3. Conditional on 𝑦𝑡, 𝑋𝑡 is independent of {𝑦𝑙 , 𝑋𝑙 ∶ 𝑙 ≠ 𝑡},
here 𝛽 = (𝛽1, 𝛽2,… , 𝛽𝑘)𝑇 , 𝜇𝑥 = (𝜇𝑥1 , 𝜇𝑥2 ,… , 𝜇𝑥𝑘 )

𝑇 , and 𝑄 is the
5

ovariance matrix. e
utoregression with exogenous variables model
We consider the following autoregression with exogenous variables:

𝑡+1 = 𝜇𝑦 +
𝑛
∑

𝑖=0
𝛽𝑖𝑦𝑡−𝑖 +

𝐹
∑

𝑙=1
𝜂𝑙 , 𝑋𝑙,𝑡 + 𝜖𝑡, (3)

here {𝑦𝑡} is the SOH value, and {𝑋𝑙,𝑡} represents the extracted features
rom the raw battery data, 𝜇𝑦 is the average level of 𝑦, and 𝜖𝑡 ∼ 𝑁(0, 𝜎2).

.2. Model update

We chose 𝑛 = 3 to capture the time series information of the capacity
n the past four cycles, and 𝐹 = 8 (eight other features we extracted
rom the battery data). Then, we imposed regularities for parameter
stimation. In general, we have three kinds of penalties: the 𝐿1 penalty,
he 𝐿2 penalty, and a linear combination of the 𝐿1 and 𝐿2 penalties.

An estimate of the parameters can be obtained by solving the
ollowing optimization problem:

𝑟𝑔𝑚𝑖𝑛𝜇𝑦 ,𝛽,𝜂
∑

𝑡
(𝑦𝑡+1 − 𝜇𝑦 −

𝑛
∑

𝑖=0
𝛽𝑖𝑦𝑡−𝑖 −

𝐹
∑

𝑙=1
𝜂𝑙𝑋𝑙,𝑡)2

+ 𝜆𝛽‖𝛽‖1 + 𝛾𝛽 |𝛽|
2 + 𝜆𝛽‖𝜂‖1 + 𝛾𝛽 |𝜂|

2, (4)

here 𝜆𝛼 , 𝜆𝛽 , 𝜂𝛼 , and 𝜂𝛽 are hyperparameters.
In our implementation, we used a grid search procedure to deter-

ine the values of the hyperparameters 𝜆𝛽 , 𝛾𝛽 , 𝜆𝜂 , and 𝛾𝜂 . Ideally, we
ould like to use cross-validation to select all four hyperparameters.

n each grid where all the hyperparameters were fixed, we used the
uadprog package in MATLAB to solve the quadratic optimization prob-
em. However, because we had only 30 training data points for a given
attery, the cross-validation result was highly noisy. Thus, we needed
o prespecify some of the hyperparameters. For model simplicity and
parsity, combined with the evidence from the cross-validation, we set
𝛼 = 𝜂𝛽 = 0, leading to L1 penalization on both the autoregressive
erms and the extracted features. With the remaining 𝜆𝛼 and 𝜆𝛽 , the
ross-validation results still had considerable variance. By the same
parsity and simplicity considerations, we further constrained 𝜆𝛼 = 𝜆𝛽 .
herefore, the AREV model we finally proposed is Eq. (3) with the
onstraints that 𝜂𝛼 = 𝜂𝛽 = 0 and 𝜆𝛼 = 𝜆𝛽 . The flowchart of the proposed
ethodology is shown in Fig. 6.

.3. Training and testing process

The goal of a regression problem is to learn the mapping from the
nputs 𝑥 to the outputs 𝑦, given a labeled training set of input–output
airs {𝑥𝑖, 𝑦𝑖}𝑚𝑖=1, where 𝑚 is the number of training examples. In our
ase, the input 𝑥𝑖 was the eight extracted features from the batteries
ombined with SOH values in the past 𝑛 cycles. The learned model
ould then be used to make predictions at the test indices. Because there
ere many kinds of lithium batteries for this dataset and the operating

onditions of the different batteries were different, the applicability of
he model could be guaranteed by using the historical data of the same
attery for training.

Because the objective of this study was to predict the SOH values in
uture cycles, we assumed that the SOH values of past cycles could be
btained. At a given cycle 𝑘, the goal was to predict the SOH value of
ycle 𝑘+1. In this paper, we set 𝑚 = 30, 𝑛 = 3, and 𝐹 = 8. The training
nd testing processes were as follows:

Step 1: (𝑘−𝑚, 𝑘−𝑚− 1,… .𝑘− 1) was selected as a sliding window,
hich immediately preceded the cycle to be predicted, cycle 𝑘, for

he training cycle to capture the most recent changes in the battery
egradation mode and the time series behavior. The sliding window
lid as cycle 𝑘 increased.

Step 2: The SOH values of cycles (𝑘−𝑛, 𝑘−𝑛+1,… , 𝑘−1) and the eight

xternal feature variable values of cycle 𝑘−1 were selected as the input
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Fig. 6. Flowchart of the proposed methodology.
Fig. 7. Explanatory diagram of step 2.
data, and the SOH value of cycle 𝑘 was selected as the output data. The
above input and output formed the first group of training data. The SOH
values of cycles (𝑘− 𝑛−1, 𝑘− 𝑛,… , 𝑘−2) and the eight external feature
variable values of cycle 𝑘 − 2 were selected as the input, and the SOH
value of cycle 𝑘 − 1 was selected as the output. The above input and
output formed the second group of training data. … The SOH values of
cycles (𝑘−𝑚−𝑛+1, 𝑘−𝑚−𝑛+2,… , 𝑘−𝑚) and the eight external feature
variable values of cycle 𝑘 − 𝑚 were selected as the input, and the SOH
value of cycle 𝑘−𝑚+1 was selected as the output. The above input and
output formed the thirtieth group of training data. The above historical
data were obtained at the current time point, that is, at the end of the
𝑘th cycle. The AREV model was trained using the above data (a total
𝑚 groups of training data) to obtain its model parameters (𝛼 and 𝛽 in
Eq. (3)).

Step 3: A test was performed on cycle 𝑘+1. The trained model with
known parameters was used for the prediction of the next cycle, that
is, the SOH values of (𝑘 − 𝑛 + 1, 𝑘 − 𝑛 + 2,… , 𝑘) and the values of eight
external feature variable values of cycle 𝑘 were selected as inputs, and
they were introduced into the trained AREV equation (Eq. (3)) to obtain
the SOH prediction value of cycle 𝑘 + 1.

Step 4: 𝑘 = 𝑘 + 1, and the above steps were repeated.
In step 2, the selection of training data, that is, the moving window

of 30-cycles, is shown in Fig. 7.
6

3.4. Evaluation metrics

The root mean square error (RMSE), mean absolute error (MAE),
and mean absolute percent error (MAPE) were the three evaluation
metrics used to evaluate the prediction accuracy of the proposed
method. They are defined as follows:

RMSE =
√

1
𝑁

𝑁
∑

𝑖=1
(�̂� − 𝑦)2 (5)

MAE = 1
𝑁

𝑁
∑

𝑖=1
|�̂� − 𝑦| (6)

MAPE = 1
𝑁

𝑁
∑

𝑖=1
|

�̂� − 𝑦
𝑦

| (7)

where 𝑦 is the real value of the capacity, �̂� is the one-step-ahead
predicted value of the capacity, and 𝑁 is the number of time points
of the prediction period.

4. Experimental results and discussion

4.1. SOH prediction

According to the process described in Section 3.3, first train the
model parameters of AREV model through the past 30 groups of
training data, and then use the obtained model with known parameters
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c
t
c

Fig. 8. Prediction results using proposed autoregressive with exogenous variables (AREV) model. (a) Red line: real value, blue line: prediction results; (b) absolute error.
Table 2
Summary of experimental errors of state of health (SOH) prediction.

Model RMSE MAPE MAE

AREV 0.000963 0.000562 0.000584
Autoregressive model 0.000991 0.000571 0.000593
Model with only exogenous variables 0.001253 0.000717 0.000744
SVM with all variables 0.001017 0.000640 0.000612

to predict the SOH value of the next cycle. The output prediction results
can be seen in Fig. 8. The prediction result is relatively accurate, as
shown in Table 2, and its RMSE is 0.000963, MAE is 0.000562, MAPE
is 0.000584. Because the model proposed in this paper is a combination
of AR model and external variables, in the next section, we further
compare the difference in prediction accuracy between the original
model (AREV) and the individual AR model, as well as the model that
only considers external variables.

4.2. Comparative study

The preliminary analysis of the battery health state showed the
current capacity value was not only affected by the capacity value
of the previous charge–discharge cycles but also by other external
variables that affected the battery degradation. Therefore, the proposed
AREV model was constructed by combining two influencing factors at
the same time. In this experiment, we compared the AREV model with
an autoregressive model that considered only the influence of autore-
gressive factors of the time series and with feature models considering
only external variables. This was to compare the prediction accuracies
of different models when predicting the capacity value of the next cycle.
Therefore, three models, which were named the full model (AREV),
autoregressive (AR) model, and model with only exogenous variables,
were applied and compared. In addition, a machine learning approach,
the support vector machine (SVM) method, was conducted using the
same procedure as that described in Section 3.3 as a comparison.

In the AR model, the inputs of the model were the capacities at
cycles 𝑘, 𝑘−1, 𝑘−2, and 𝑘−3, and the output was the capacity value at
ycle 𝑘+1. In the model with only exogenous variables (feature model),
he values of the eight features extracted from the IC curve and the IR
urve (as described in Section 3.1) in the 𝑘th cycle were used as the

inputs of the model, and the output was still the capacity at cycle 𝑘+1.
As shown in Fig. 9 and Table 2, the proposed AREV model had

better prediction results than the model considering only autoregressive
terms or the model with only external variables in terms of all three
metrics. Therefore, we verified the idea of model construction in this
7

paper; that is, the historical data of the capacitance and other features
Table 3
Prediction results of capacity in last 100 cycles with different look-ahead periods.

Look-ahead period RMSE MAPE MAE

10 cycles 0.000548 0.000432 0.000513
30 cycles 0.000912 0.000517 0.000622
50 cycles 0.001116 0.000659 0.000799

extracted based on electrochemical analysis and curve analysis played a
role in the capacitance prediction of the next cycle. Furthermore, under
this circumstance (using all autoregressive and external variable data
as inputs), the prediction accuracy of the AREV model was still better
than that of the SVM model.

4.3. Short-term look-ahead SOH prediction

In this experiment, we only considered the prediction accuracy of
the capacity value at the end of the battery life (the last 100 cycles),
because this result would be helpful in the subsequent remaining useful
life prediction. Under the general definition, when the SOH value
decayed to less than 80% of its initial value, the battery life can be
regarded as at its end. Therefore, if the capacity value can be predicted
accurately by a certain look-ahead period, the remaining useful life of
the battery can also be predicted more accurately at this time.

Fig. 10 shows the performance of the n-cycle look-ahead prediction,
and Table 3 records the prediction errors of the last 100 cycles. The
training and testing process was the same, while we changed the output
SOH value by setting an n-cycle look-ahead period. For each cycle
number, the model parameters were obtained by training with the
data before the current cycle. A 30-cycle moving window was also
used in this experiment. Three look-ahead periods were obtained and
compared, which were 10, 30, and 50 cycles ahead.

It can be seen in Fig. 10 that the proposed method had high
accuracy for relatively small look-ahead periods 𝑛, but the performance
decreased with the increase in 𝑛. This is not surprising, because the
longer the time interval was, the lower the accuracy of forward-looking
prediction became. Based on the results, the proposed model could
accurately predict the capacity after 50 cycles.

5. Conclusions

In this paper, a data-driven method based on the AREV model was
proposed to process battery capacity data. Our proposed model aimed
to predict the SOH of a lithium-ion battery using data from both the
SOH at the previous time point and other features that we extracted
from the raw battery data.
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Fig. 9. Comparison of different models. Autoregressive model: (a) red line: real value, blue line: prediction results; (c) absolute error; (e) boxplot of absolute error. Model with
only exogenous variables: (b) red line: real value, blue line: prediction results; (d) absolute error; (f) boxplot of absolute error.
Through our experiments, we drew the following conclusions. First,
compared with models with only time series or feature information,
the proposed AREV model, by combining time series information of
the past three time points and other eight features that we extracted,
achieved more accurate prediction results. Second, a moving window
was proposed to select the training data from each battery and update
the model at each time point so that we could obtain an online model.
In addition, we used training data from the same data set and avoided
the influence of different working conditions on different batteries.
Third, in the feature extraction section, we extracted related features
from battery data and used a penalized regression model to select the
most related features to perform predictions. These features are based
on the mechanism of battery decay in electrochemistry, as described in
Section 2.1 of this article. Thus, they have strong interpretability and
predictive effectiveness.

A methodology was proposed that optimally combined the infor-
mation from multiple extracted features to produce more accurate and
robust real-time predictions than any other existing system. Moreover,
8

our ensemble approach was capable of using real-time and histori-
cal information to accurately predict the SOH several cycles ahead.
Therefore, it could effectively monitor the decline of battery health in
advance.

Furthermore, our experimental data were obtained by a constant-
current discharge. At present, the battery data obtained in the lab-
oratory cannot fully simulate the real dynamics of the charge and
discharge cycle in the practical application of batteries, and the data
are limited (from the experimental results of the MIT team). Although
the charging and discharging of batteries are dynamic in practical
applications, in general, the daily or weekly load is approximately the
same. Therefore, in terms of applications, the following process can
be used: regularly discharge the battery at a constant current, obtain
relevant data, and extract and predict features to ensure the accuracy
of the predictions.

Finally, in the previous mechanism analysis and curve comparison,
we found that the curves of some data had a distinct downward trend or
fluctuations with the aging of the battery, that is, the extracted features
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Fig. 10. Comparison of different look-ahead periods, where the red lines represent the real values and the blue lines represent the prediction results: (a) 50-cycle look-ahead
prediction results; (b) 30-cycle look-ahead prediction results; (c) 10-cycle look-ahead prediction results; (d) box plot of absolute error for short-term look ahead prediction.
could clearly reflect the degradation process of the lithium battery.
Therefore, the following points could be used as ideas to further explore
the feature extraction of lithium batteries in the future:

1. The characteristics of directly measured variables, such as the
aging cycle, charging time, and open circuit voltage, have been
widely involved in previous research, so the variables with better
effects could be selected as the basic characteristics.

2. According to the characteristics of the original voltage capacity–
time curve, four characteristics were extracted from the
constant-current charging curve, including the charging and
voltage duration, slope, and vertical slope. The slope, intercept,
and other parameters could be obtained by a simple machine
learning model or a multiple regression model. By using the
slope of the existing regression model and recording the change
of its slope in each cycle, the degradation trends of batteries
in different stages could be observed; accordingly, they were
arranged to form a new sequence to reflect the change of the
degradation trends over different degradation time periods.
For example, by approximating the derivative, the IC curves can
be converted to a difference form, and the difference capacity
(DC) curves can be obtained, which can be computed by

▵ 𝑄(𝑉 )𝑖 = 𝑄𝑖+1(𝑉𝑖+1) −𝑄𝑖(𝑉𝑖), (8)

where 𝑖 is the index number of the data. Then, the DC curve can
be linearized as follows:

▵ 𝑄(𝑉 ) = 𝑤(𝑐)(𝑎(𝑐) −𝑄(𝑉 )) ∗ 𝑄(𝑉 ) + 𝐵(𝑐) + 𝜖(𝑐), (9)

where 𝑄(𝑉 ) represents the difference capacity; 𝑎(𝑐), 𝑤(𝑐), and
𝑏(𝑐) are the function model parameters of cycle number C; and
𝜖(𝑐) ∼ 𝑁(0, 𝜃2). The mean value is 0, and the variance is 𝜃2.
Using the proposed difference model, the nonlinear relationship
9

between the battery deterioration and potential information in
the DC curve can be mined through the above transformed linear
equation. Then, the model parameters 𝑎(𝑐), 𝑤(𝑐), and 𝑏(𝑐) of
the whole curve can be obtained and used as health features in
future work. Further details can be found elsewhere [32].

3. Voltage curve features can be processed, such as the IC and DV
curves. In particular, because the peak intensity, peak offset, and
other values in the IC curve have a great impact on the degrada-
tion of a battery, we can focus on extracting the characteristics
related to it.

4. The characteristics of statistical indicators, such as the parame-
ters of linear capacity fitting, the sample entropy of the voltage
sequence, the internal resistance, and the polarization inter-
nal resistance, were analyzed in previous work. It was found
that the internal resistance of the battery showed significant
changes in different stages, so it can be used to reflect the
degradation process. According to electrochemical theory, the
sample entropy and polarization internal resistance also have
some characteristics reflecting the degradation process, which
have not been involved in previous work. Therefore, we can also
focus on the feature extraction of the two curves.
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